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S1. PERTURBATIVE CALCULATIONS OF THERMOELECTRIC COEFFICIENT GT

We present here the details of perturbative calculations accounting for the backscattering processes. We use
notations and definitions of the Letter. All calculations are performed for 3CK model in the spirits of Matveev-
Andreev theory [A. V. Andreev and K. A. Matveev, Phys. Rev. Lett. 86, 280 (2001); K. A. Matveev and A. V.
Andreev, Phys. Rev. B 66, 045301 (2002)], which concern the saddle-point method. We first evaluate Gaussian
integral Z(τ) =

∫
exp[−S0 − SC(τ) − S′]

∏
αDφα(x, t) under the assumption S′ = 0. At zero order, the saddle

point, based on the principle of the action minimum, is found as

φc,τ (x, t) =
πN√

3
−
√

3TEC
∑
ωn

exp [−|ωnx|/vF ]

|ωn|+ 3EC/π
nτ (ωn) e−iωnt, (S1.1)

with ωn = 2πnT are bosonic Matsubara frequencies and the Fourier transform of nτ (t) is nτ (ωn) = (eiωnτ−1)/iωn.
In the calculation K0(τ) = Z(τ)/Z(0), the integrals over the fluctuations of the field φc (x, t) about the saddle

points in the numerator and the denominator cancel each other. Therefore, the value of K0(τ) is evaluated by the
integrals at the saddle point values. In the condition τ � E−1C and T � EC , we find

[S0 + SC(τ)]φ=φc,τ (x,t) =
3EC
2π2T

∞∑
n=1

[1− cos (2πTnτ)]

n [n+ 3EC/2π2T ]
, (S1.2)

and [S0 + SC(τ)]φ=φc,0(x,t) = 0. The correlator K0(τ)

K0 (τ) =

[
π2T

3γEC

1

| sin (πTτ) |

]2/3
. (S1.3)

Plugging in the formula (S1.3) into equation (6) we find the electric conductance as a function of the temperature:

G =
GLπ

11/6Γ (4/3)

2 (3γ)
2/3

Γ (11/6)

[
T

EC

]2/3
. (S1.4)

Substituting formula (S1.3) into equation (7) we find that the thermoelectric coefficient GT vanishes. At zero order
of perturbation theory, the PH symmetry is conserved (as explained in the main text). One needs to proceed the
perturbation calculation at the first non-vanishing order. To proceed we express S′ in terms of the products of
charge mode, pseudo-spin mode, and flavor mode. However, only the fluctuations of the charge mode is suppressed
at low frequencies by the charging energy term. The fluctuations of the pseudo-spin mode and flavor mode are not
suppressed by the charging energy. Therefore, the average 〈S′〉 = 0.

At second order of perturbation theory,

K (τ) = KC (τ)

[
1 +

1

2

(
〈S

′2〉τ − 〈S
′2〉0
)]

(S1.5)

and therefore it is necessary to calculate 〈S′2〉τ . For the purposes of illustration we use parametrization of charge,
pseudospin and flavor modes given by Eq.(1).

〈S
′2〉τ =

D2

π2
|r|2

∫ β

0

dt

∫ β

0

dt′

[〈
cos

[
2√
3
φc(t)−

2
√

2√
3
φf (t)

]
cos

[
2√
3
φc(t

′)− 2
√

2√
3
φf (t′)

]〉

+4

〈
cos

[
2√
3
φc(t) +

√
2√
3
φf (t)

]
cos

[
2√
3
φc(t

′) +

√
2√
3
φf (t′)

]〉〈
cos
[√

2φs(t)
]

cos
[√

2φs(t
′)
]〉]

,(S1.6)



2

where we use shorthand notations φα(t) ≡ φα(0, t). Since charge, pseudo-spin, flavor modes are independent, we
decouple them as

〈S
′2〉τ =

D2

2π2
|r|2

∫ β

0

dt

∫ β

0

dt′
{

Re
[
κ+c (t, t′, τ) κ̃+f (t, t′, τ) + κ−c (t, t′, τ) κ̃−f (t, t′, τ)

]
+2Re

[
κ+c (t, t′, τ)κ+f (t, t′, τ) + κ−c (t, t′, τ)κ−f (t, t′, τ)

]
Re
[
κ+s (t, t′, τ) + κ−s (t, t′, τ)

]}
, (S1.7)

with κ±j (t, t′, τ) ≡ 〈exp [iaj [φj (t)± φj (t′)]]〉. We apply the saddle-point method one more time in order to perform

the integrals in the formula (S1.7)

κ±j (t, t′, τ) = exp [iaj (φjτ (t)± φjτ (t′))] exp
[
−a2j

(
〈ϕ2
j (t)〉 ± 〈ϕj (t)ϕj (t′)〉

)]
, (S1.8)

with φj (t) = φjτ (t) +ϕj (t). Calculation of the correlator 〈ϕj (t)ϕj (t′)〉 is achieved by using generating functional
method as follows.

To evaluate the correlator (S1.8) we introduce the generating functional

W [{Jj (ωn)}] =

〈
exp

[
−T

∑
ωn

Jj (ωn)ϕj (−ωn)

]〉
. (S1.9)

The value of the Gaussian integral is completely defined by the saddle point

W [{Jj (ωn)}] = exp

[
−T

2

∑
ωn

Jj (ωn)ϕJj (−ωn)

]
, (S1.10)

in which ϕJj (t) is the saddle-point value of the field ϕj .
Now, we consider the charge mode: the fluctuations of ϕj (t) coincide with those of φc (0, t) at N = 0, nτ = 0 and

nτ (t) plays the role of a source term similar to Jc (t) as Jc (t) = 2
√

3ECnτ (t) /π, or nτ (ωn) = πJc (ωn) /2
√

3EC .
We re-write the generating functional as follows:

W [{Jc (ωn)}] = exp

[
πT

4

∑
ωn

Jc (ωn) Jc (−ωn)

|ωn|+ 3EC
π

]
. (S1.11)

The correlator 〈ϕc (−ωn)ϕc (ωm)〉 can be obtained by differentiating the functional W in formula (S1.9) with respect
to Jc (ωn) and Jc (−ωm). In time representation, this correlator is written as

〈ϕc (t)ϕc (t′)〉 =
πT

2

∑
ωn

eiωn(t−t′)e−|ωn|/D

|ωn|+ 3EC
π

.

At the limits we are interested in, this correlator behaves as

〈ϕc (t)ϕc (t′)〉 =


1
2 ln πD

3γEC
√

1+[D(t−t′)]2
, |t− t′| � E−1C

π4T 2

2(3EC)2 sin2[πT (t−t′)] , |t− t′| � E−1C .
(S1.12)

Therefore, at T � EC , we obtain

κ+c (t, t′, τ) ≈
[

3γEC
πD

] 2
3

ei
4πN

3 e−i
2
3χτ (t)e−i

2
3χτ(t

′), (S1.13)

and

κ−c (t, t′, τ) ≈
[

3γEC
πD

] 2
3

e−i
2
3χτ (t)e+i

2
3χτ(t

′), (S1.14)

with

χτ (t) =
3EC
4π2T

∞∑
n=−∞

e−i2πTn(t−τ) − e−i2πTnt

in
(
|n|+ 3EC

2π2T

) = [πnτ (t) + δχτ (t)] , (S1.15)
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δχτ (t) =

∞∑
n=1

sin [2πTn (t− τ)]− sin [2πTnt]

n+ 3EC
2π2T

≈ π2T

3EC
{cot [πT (t− τ)]− cot [πTt]} . (S1.16)

Similarly, we consider pseudospin and flavor modes. We find that if there exists a “flavoring energy term” Ef and
a “spinning energy term” Es (in the same meaning as charging energy term EC), the relation between nτ (t) and

Jf/s (t) should be Jf (t) = 2
√

6Efnτ (t) /π and Js (t) = 2
√

2Esnτ (t) /π. However, after obtaining the correlator〈
ϕs/f (t)ϕs/f (t′)

〉
, we need to take the limits Es/f = 0. At the end, we have

〈ϕs (t)ϕs (t′)〉 = 〈ϕf (t)ϕf (t′)〉 =
πT

2

∑
ωn

eiωn(t−t′)e−|ωn|/D

|ωn|

= −1

4
ln
[
1 + e−

4πT
D − 2e−

2πT
D cos [2πT (t− t′)]

]
. (S1.17)

We obtain the result as shown in the second line in the limit T � D.

κ−s (t, t′, τ) ≈
[
πT

D

]
1

| sin (πT (t− t′)) |
, (S1.18)

κ−f (t, t′, τ) ≈
[
πT

D

] 1
3 1

| sin (πT (t− t′)) | 13
, (S1.19)

κ̃−f (t, t′, τ) ≈
[
πT

D

] 4
3 1

| sin (πT (t− t′)) | 43
. (S1.20)

If an electron comes from QPC2, we only take into account the first term in Eq. (S1.7) and φsτ (x, t) = 0, φfτ (x, t) =
−2πN/

√
6 then

κ̃+f (t, t′, τ) ≈ ei 8πN3
[

4πT

D

] 4
3

| sin (πT (t− t′)) | 43 . (S1.21)

The N -dependent term is

〈S
′2〉τ, odd N ≈ 4

[
6γEC
π2

] 2
3

T
4
3 |r|2 sin [4πN ]

∫ β

0

dt sin

[
2

3
χτ (t)

] ∫ β

0

dt′ cos

[
2

3
χτ (t′)

]
| sin (πT (t− t′)) | 43 . (S1.22)

We find that

cos

[
2

3
χτ (t′)

]
= cos

[
2

3
πnτ (t′) +

2

3
δχτ (t′)

]
≈

{
− 1

2 −
√
3
3 δχτ (t′) , if 0 ≤ t′ ≤ τ,

1, if τ < t′ ≤ β,
(S1.23)

sin

[
2

3
χτ (t)

]
= sin

[
2

3
πnτ (t) +

2

3
δχτ (t)

]
≈

{√
3
2 −

1
3δχτ (t) , if 0 ≤ t ≤ τ,

2
3δχτ (t) , if τ < t ≤ β.

(S1.24)

The function δχτ (t) as shown in formula (S1.16) makes the integrals to diverge logarithmically . At |t−t′| � E−1C
and T � EC , we take into account only the terms which contain the first order in δχτ (t) , we obtain

〈S
′2
2 〉τ, odd N ≈ −

8
(
2−
√

3
)

3

[
6γ

π2

] 2
3

|r|2
[
T

EC

] 1
3

ln

[
EC
T

]
sin [4πN ]F2 (τ) , (S1.25)

with

F2 (t) = cos (πTt)

[
F 1
2

[
1

2
,

5

6
,

3

2
, cos2 (πTt)

]
+ 3| sin (πTt) | 13

]
. (S1.26)
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The second order contribution to the correlator K (τ) corresponding to this process is

KoddN (τ) ≈ −
2

2
3 4
(
2−
√

3
)

3
|r|2 T

EC
ln

[
EC
T

]
sin [4πN ]

F2 (τ)

| sin (πTτ) | 23
. (S1.27)

The equation for the thermoelectric coefficient GT accounting for an electron coming from QPC2 is given by

GT = C2
GL
e
|r|2 T

EC
ln

[
EC
T

]
sin [4πN ] , (S1.28)

with

C2 =
2

2
3 2
(
2−
√

3
)

3
π

∫ ∞
−∞

sinh2(x)
[
F 1
2

[
1
2 ,

5
6 ,

3
2 ,− sinh2(x)

]
+ 3 cosh

1
3 (x)

]
cosh

11
3 (x)

dx = 0.936794. (S1.29)

If an electron comes from QPC1 or QPC3, we only take into account the second term in Eq. (S1.7) and
φsτ (x, t) = ±πN/

√
2, φfτ (x, t) = πN/

√
6 then

κ+s (t, t′, τ) ≈ ei2πN
[

4πT

D

]
| sin (πT (t− t′)) |, (S1.30)

κ+f (t, t′, τ) ≈ ei 2πN3
[

4πT

D

] 1
3

| sin (πT (t− t′)) | 13 . (S1.31)

As we have discussed in the main text, GT must be an odd function of the gate voltage N as well as odd func-
tion of τ . Plugging in all κ±j (t, t′, τ) given by equations Eq.(S1.18-S1.31) into formula (S1.7), we obtain the

temperature scaling of 〈S′2〉τ, odd N .We find that only two terms 2Re
[
κ+c (t, t′, τ)κ+f (t, t′, τ)

]
Re [κ+s (t, t′, τ)] and

2Re
[
κ+c (t, t′, τ)κ+f (t, t′, τ)

]
Re [κ−s (t, t′, τ)] contribute to GT . The first one contributes to GT the same result as

shown in Eq. (S1.28). Let us illustrate the calculations for the latter term:

〈S
′2〉τ, odd N ≈ 2

[
6γEC
π2

] 2
3

T
4
3 |r|2 sin [2πN ]

∫ β

0

dt sin

[
2

3
χτ (t)

] ∫ β

0

dt′ cos

[
2

3
χτ (t′)

]
| sin (πT (t− t′)) |− 2

3 . (S1.32)

The function | sin (πT (t− t′)) |− 2
3 exhibits integrable power-law divergence at t′ → t,. We calculate the integrals

in Eq. (S1.32) in the same way as we did for Eq. (S1.22). At the end, we obtain

〈S
′2〉τ, odd N ≈ −

10

3

[
6γ

π2

] 2
3
[
T

EC

] 1
3

|r|2 sin [2πN ] ln

[
EC
T

]
F1 (τ) , (S1.33)

with

F1 (t) = cos (πTt)F 1
2

[
1

2
,

5

6
,

3

2
, cos2 (πTt)

]
. (S1.34)

We plug formula (S1.33) into formula (S1.5) and obtain the correlator K (τ) at second order as

KoddN (τ) ≈ −2
2
3 5|r|2

3

T

EC
ln

[
EC
T

]
sin [2πN ]

F1 (τ)

| sin (πTτ) | 23
. (S1.35)

From (7) and (S1.35), we obtain the thermoelectric coefficient GT which is contributed by

2Re
[
κ+c (t, t′, τ)κ+f (t, t′, τ)

]
Re [κ−s (t, t′, τ)]. We collect the contributions to the thermoelectric coefficient GT ac-

counting for electrons coming from either QPC1 or QPC3 and add corresponding contribution originating from
QPC2. Finally performing symmetrization over all QPCs index permutations corresponding to all possible ways to
re-numerate QPCs as explained in the main text we get

GT = C1 (1 + a cos[2πN ])
GL
e
|r|2 T

EC
ln

[
EC
T

]
sin [2πN ] , (S1.36)

with a = 2C2/C1 ≈ 2.87,

C1 =
5

9
22/3π

∫ ∞
−∞

sinh2(x)F 1
2

[
1
2 ,

5
6 ,

3
2 ,− sinh2(x)

]
cosh

11
3 (x)

dx = 0.653. (S1.37)

We demonstrated that the temperature scaling of GT and TP is given by T log T and T 1/3 log T correspondingly.
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